Effect of a periodic acceleration on nonlinear modulation of interfacial gravity-capillary waves between two electrified fluids under the influence of a horizontal electric field

Author:

El-Dib Yusry O.

Abstract

A theoretical analysis of the subharmonic response of two resonant modes of interfacial gravity-capillary waves between two electrified fluids of infinite depth under the influence of a constant horizontal electric field is investigated. The method of multiple scales is used to derive two parametrically nonlinear Schrödinger equations that describe the behavior of the disturbed system in the resonance case. One of them contains the first derivatives in space for a complex-conjugate type while the second contains a linear complex-conjugate term. A time-dependent solution of a traveling wave is obtained. Stability conditions are obtained analytically and are discussed numerically. It is found that the stability criteria are significantly affected by the amplitude of the temporal solution. The numerical calculations show that instability is produced in the system except for small stable areas due to the periodic forcing. It is observed that the acceleration frequency plays a dual role in the stability criterion. The results show that the horizontal electric field plays a dual role in the resonance case.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3