Author:
Schaefer Ted,Sebastian Rudy
Abstract
The proximate spin–spin coupling constant between the methyl protons and the ring protons, 5J(H,OCH3), is extracted from a full analysis of the 1H and 19F nuclear magnetic resonance spectra of 3-fluoroanisole in CS2 and acetone-d6 solutions. The values of 5J(H,OCH3) imply that the less polar cis conformer is slightly more stable at 300 K than the more polar trans conformer in both solvents, in agreement with geometry-optimized STO-3G MO computations for the free molecule. The latter also find a higher barrier to internal rotation of the methoxy group for 3-fluoroanisole than for the parent molecule. The present results are compared with other measurements of the conformer ratio for the vapor and for solutions. The STO-3G and 6-31G structures of the cis and trans conformers are compared. The C—F bond length is computed more reliably with the minimal basis set, as is the COC bond angle. The internal angles of the benzene moiety are, of course, found more accurately with the 6-31G basis. The computations indicate additivity of the substituent effects on the internal angle, as found experimentally for a variety of benzene derivatives. Keywords: 1H NMR of fluoroanisole, conformations of fluoroanisole, molecular orbital calculations for fluoroanisole.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献