Avoided-crossing molecular-beam spectroscopy of symmetric tops. I. Phosphoryl fluoride (OPF3)

Author:

Ozier Irving,Meert W. Leo

Abstract

A new avoided-crossing technique using a conventional molecular beam electric resonance spectrometer has been developed for studying symmetric rotors. By means of an external electric field, two levels with different values of K are made nearly degenerate and normally forbidden electric-dipole transitions between the interacting levels are observed. Mixing matrix elements ηST with ΔK = ± 3 arise from the centrifugal distortion dipole moment μD and mixing terms ηHYP, with ΔK = ± 1, ± 2 arise from the nuclear hyperfine Hamiltonian. Explicit expressions for ηHYP are given in an Appendix. Many of these terms break the symmetry of both the rotational and nuclear spin parts of the wave functions. The avoided-crossing method is discussed in detail, with emphasis on its application to the measurement of (A0–B0). It is shown how the technique can be used to determine the perpendicular moment μD, as well as μJ, and μK, the constants which characterize the dependence of the parallel dipole moment μ on J and K, respectively. Other applications include the experimental investigation of the selection rules for the individual terms in ηHYP and the determination of the sign of the rotational g-factors [Formula: see text] and [Formula: see text].∙The method has been applied to phosphoryl fluoride (OPF3). It has been determined that (A0–B0) = 217.4987(44) MHz, μD = 5.856(20) × 10−6 D, μJ = −3.38(10) × 10−6 D, and both [Formula: see text] and [Formula: see text] are negative.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3