Author:
Giblin David E,Hamilton Clement W
Abstract
The fecundity of rare plants is a commonly used indicator of performance at the population or species level. However, accurately interpreting reproductive output requires an understanding of a particular species's breeding system. The purpose of this study was to determine if reproductive biology contributes to the restricted distribution of Aster curtus Cronq. We hypothesized that (i) A. curtus, like many Asteraceae species, is self-incompatible, and (ii) that pollinations between patches produce significantly more filled seeds than pollinations within patches. Fluorescent microscopy of pistils harvested after greenhouse pollination showed A. curtus to be partially self-compatible. Cross-pollination resulted in significantly more pollen grains per stigma and significantly greater pollen germination than self-pollination. Similarly, field pollination trials showed that between-patch crosses produced significantly more filled seeds than within-patch crosses. Nevertheless, within-patch pollinations produced substantial levels of filled seed. Results from the greenhouse and field trials suggest that the reproductive biology of A. curtus contributes little to its rarity. Understanding why A. curtus is rare has important implications to the conservation of the glacial outwash prairie. Moreover, the data from this research can be used in further developing predictive models for plant species rarity based on reproductive biology.Key words: Aster, endemic, Pacific Northwest, rarity, reproductive biology, self-incompatibility.
Publisher
Canadian Science Publishing
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献