Spatial variability of aboveground net primary production for a forested landscape in northern Wisconsin

Author:

Burrows S N,Gower S T,Norman J M,Diak G,Mackay D S,Ahl D E,Clayton M K

Abstract

Quantifying forest net primary production (NPP) is critical to understanding the global carbon cycle because forests are responsible for a large portion of the total terrestrial NPP. The objectives of this study were to measure above ground NPP (NPPA) for a land surface in northern Wisconsin, examine the spatial patterns of NPPA and its components, and correlate NPPA with vegetation cover types and leaf area index. Mean NPPA for aspen, hardwoods, mixed forest, upland conifers, nonforested wetlands, and forested wetlands was 7.8, 7.2, 5.7, 4.9, 5.0, and 4.5 t dry mass·ha–1·year–1, respectively. There were significant (p = 0.01) spatial patterns in wood, foliage, and understory NPP components and NPPA (p = 0.03) when the vegetation cover type was included in the model. The spatial range estimates for the three NPP components and NPPA differed significantly from each other, suggesting that different factors are influencing the components of NPP. NPPA was significantly correlated with leaf area index (p = 0.01) for the major vegetation cover types. The mean NPPA for the 3 km × 2 km site was 5.8 t dry mass·ha–1·year–1.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3