Author:
Stonehouse Brian,Heidebrecht Arthur C,Kianoush M Reza
Abstract
This paper presents the results of an investigation into the seismic level of protection afforded to reinforced concrete shear wall systems. The vulnerability and damage potential of a 30-storey building consisting of a coupled shear wall as well as noncoupled shear walls as lateral force resisting systems is evaluated. The structure, which is similar to an existing building designed and constructed in Vancouver, is designed in accordance with the 1995 National Building Code of Canada and detailed using the provisions of CAN3-A23.3-M94 (1994). Elastic analysis is performed using both two-dimensional and three-dimensional shell element models for lateral loading with and without the effects of torsion. Element design specifications are used to create moment curvature envelopes to describe the members (beam and wall) deformation characteristics. These characteristics are incorporated into the nonlinear pushover analysis and dynamic inelastic time history analysis. The level of protection investigation illustrates that the coupled and noncoupled shear wall systems exhibit excellent performance following excitations of two and three times the design level earthquake. Maximum interstorey drift and element damage levels are within the acceptable limits for life-safe performance.Key words: seismic, reinforced concrete, shear walls, coupling beams, performance, inelastic, dynamic, design.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献