Peroxidase activity and relative mobility at anthesis in flax genotrophs and their F2 progeny: developmental and genetic effects

Author:

Fieldes M. A.,Ross J.

Abstract

The genetic regulation of the environmentally induced heritable difference in peroxidase activity between Durrant's large (L) and small (S) flax genotrophs was examined in leaves from plants ranging in developmental age from 6 days before anthesis to 3 days after. Mean peroxidase activity was higher for S than L and intermediate for the reciprocal F2's from L × S and S × L crosses (F2L × S and F2S × L). However, activity increased with development and, since there were small but significant differences in the average developmental ages of L, S, F2L × S, and F2S × L plants, the effects of development on activity had to be taken into account in examining the F2 activity data for segregation. A regression method was used to remove developmental effects and, underlying these effects, total peroxidase activity appeared to be regulated by a single locus with two alleles and L dominance. Two other dimorphic loci, both described previously, were also examined. One regulates the presence-absence of septa hairs in the seed capsules and the other the relative mobility of anionic peroxidase isozymes. There was no phenotypic linkage between the three segregating parameters. The genetic control of activity appeared to regulate cationic rather than anionic activity. In addition, a relationship between activity and plant height indicated either that peroxidase activity is one of the factors regulating main stem elongation or that the locus regulating peroxidase activity is linked to one of the loci involved in the regulation of plant height.Key words: flax genotrophs, peroxidase, genetic control, development.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3