Tuning of mitochondrial pathways by muscle work: from triggers to sensors and expression signaturesThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic Machines, and has undergone the Journal’s usual peer review process.

Author:

Flueck Martin12

Affiliation:

1. Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Oxford Road, Manchester M15 6BH, UK.

2. Institute for Anatomy, University of Berne, Berne, Switzerland (e-mail: ).

Abstract

Performance of striated muscle relies on the nerve-driven activation of the sarcomeric motor and coupled energy supply lines. This biological engine is unique; its mechanical and metabolic characteristics are not fixed, but are tailored by functional demand with exercise. This remodelling is specific for the imposed muscle stimulus. This is illustrated by the increase in local oxidative capacity with highly repetitive endurance training vs. the preferential initiation of sarcomerogenesis with strength training regimes, where high-loading increments are imposed. The application of molecular biology has provided unprecedented insight into the pathways that govern muscle plasticity. Time-course analysis indicates that the adjustments to muscle work involve a broad regulation of transcript expression during the recovery phase from a single bout of exercise. Highly resolving microarray analysis demonstrates that the specificity of an endurance-exercise stimulus is reflected by the signature of the transcriptome response after muscle work. A quantitative match in mitochondrial transcript adjustments and mitochondrial volume density after endurance training suggests that the gradual accumulation of expressional microadaptations underlies the promotion of fatigue resistance with training. This regulation is distinguished from control of muscle growth via the load-dependent activation of sarcomerogenesis. Discrete biochemical signalling systems have evolved that sense metabolic perturbations during exercise and trigger a specific expression program, which instructs the remodelling of muscle makeup. A drop in muscle oxygen tension and metabolite perturbations with exercise are recognized as important signals in the genome-mediated remodelling of the metabolic muscle phenotype in humans.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Reference40 articles.

1. Physiological activation of hypoxia inducible factor‐1 in human skeletal muscle

2. Muscle, Genes and Athletic Performance

3. Booth, F.W., and Baldwin, K.M. 1996. Muscle plasticity: energy demanding and supply processes.InHandbook of physiology. Sect. 12, Chap. 24.Edited byL.B. Rowell and J.T. Shepherd. Oxford University Press, New York. pp. 1075–1123.

4. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity

5. Hypoxia-Induced Gene Activity in Disused Oxidative Muscle

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3