A cyclic self-learning Chinese word segmentation for the geoscience domain

Author:

Qiu Qinjun12,Xie Zhong12,Wu Liang12

Affiliation:

1. Department of Information Engineering, China University of Geosciences, Wuhan 430074, China.

2. National Engineering Research Center of Geographic Information System, Wuhan 430074, China.

Abstract

Unlike English and other western languages, Chinese does not delimit words using white-spaces. Chinese Word Segmentation (CWS) is the crucial first step towards natural language processing. However, for the geoscience subject domain, the CWS problem remains unresolved with many challenges. Although traditional methods can be used to process geoscience documents, they lack the domain knowledge for massive geoscience documents. Considering the above challenges, this motivated us to build a segmenter specifically for the geoscience domain. Currently, most of the state-of-the-art methods for Chinese word segmentation are based on supervised learning, whose features are mostly extracted from a local context. In this paper, we proposed a framework for sequence learning by incorporating cyclic self-learning corpus training. Following this framework, we build the GeoSegmenter based on the Bi-directional Long Short-Term Memory (Bi-LSTM) network model to perform Chinese word segmentation. It can gain a great advantage through iterations of the training data. Empirical experimental results on geoscience documents and benchmark datasets showed that geological documents can be identified, and it can also recognize the generic documents.

Publisher

Canadian Science Publishing

Subject

Earth-Surface Processes,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3