Affiliation:
1. Department of Information Engineering, China University of Geosciences, Wuhan 430074, China.
2. National Engineering Research Center of Geographic Information System, Wuhan 430074, China.
Abstract
Unlike English and other western languages, Chinese does not delimit words using white-spaces. Chinese Word Segmentation (CWS) is the crucial first step towards natural language processing. However, for the geoscience subject domain, the CWS problem remains unresolved with many challenges. Although traditional methods can be used to process geoscience documents, they lack the domain knowledge for massive geoscience documents. Considering the above challenges, this motivated us to build a segmenter specifically for the geoscience domain. Currently, most of the state-of-the-art methods for Chinese word segmentation are based on supervised learning, whose features are mostly extracted from a local context. In this paper, we proposed a framework for sequence learning by incorporating cyclic self-learning corpus training. Following this framework, we build the GeoSegmenter based on the Bi-directional Long Short-Term Memory (Bi-LSTM) network model to perform Chinese word segmentation. It can gain a great advantage through iterations of the training data. Empirical experimental results on geoscience documents and benchmark datasets showed that geological documents can be identified, and it can also recognize the generic documents.
Publisher
Canadian Science Publishing
Subject
Earth-Surface Processes,Geography, Planning and Development
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献