A deep transfer learning-based damage assessment on post-event very high-resolution orthophotos

Author:

Abdi Ghasem12,Esfandiari Morteza12,Jabari Shabnam12

Affiliation:

1. Department of Geodesy & Geomatics Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada

2. Department of Geodesy & Geomatics Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.

Abstract

Post-disaster building damage assessment is an important application of remote sensing. The increasing resolution of remote sensing imaging systems and state-of-the-art deep learning networks has facilitated damage assessment. However, most existing methods in the literature concentrate on damage/non-damage classification only in specific disaster types/areas using pre- and post-event images. Furthermore, site visits are inevitable to assess the level of damage to structures. Therefore, the main objective of this study was to utilize deep transfer learning over a pre-trained network and extend it to a damage assessment framework. The network is fine-tuned to identify four different damage levels: non-damage, minor damage, major damage, and collapsed, using only post-event images taken from different disaster types/areas. To evaluate the proposed framework, we carried out three experiments on Hurricane Irma in Sint Maarten, Hurricane Dorian in Abaco Islands, and Woolsey Fire using post-event orthophotos derived from unmanned aerial vehicle (UAV) images. The results of over 80% overall accuracy confirm that with a structured learning scenario, it is possible to use transfer learning on very high-resolution remote sensing images to classify the level of structural damage.

Publisher

Canadian Science Publishing

Subject

Earth-Surface Processes,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3