Author:
Grundland A. M.,Lalague L.
Abstract
We study the symmetries of the equations describing a nonstationary and isentropic flow for an ideal and compressible fluid in four-dimensional space-time. We prove that this system of equations is invariant under the Galilean-similitude group. In the special case of the adiabatic exponent γ = 5/3, corresponding to a diatomic gas, the symmetry group of this system is larger. It is invariant under the Galilean-projective group. A representatives list of subalgebras of Galilean similitude and Galilean-projective Lie algebras, obtained by the method of classification by conjugacy classes under the action of their respective Lie groups, is presented. The results are given in a normalized list and summarized in tables. Examples of invariant and nonreducible partially invariant solutions, obtained from this classification, is constructed. The final part of this work contains an analysis of this classification in connection with a further classification of the symmetry algebras for the Euler and magnetohydrodynamics equations.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献