Author:
Semmache B,Kallel S,Omari H El,Lemiti M,Laugier A
Abstract
Low-pressure chemical vapor deposition (LPCVD) in halogen lamp-heated reactor (RTLPCVD: rapid thermal LPCVD) is a promising technique for silicon-based thin films deposition. Indeed, overall process time and gas consumption reduction in RTP reactors allows to project new device fabrication technologies (microsensors, solar cells) in order to reach a higher environmental safety with respect to classical technologies.Various gases available on our RTP installation (SiH4, NH3, N2O, O2, PH3, B2H6) enable several silicon-based thin films RTLPCVD deposition: intrinsic polycrystalline silicon (poly-Si) films or in situ doped poly-Si, silicon nitride (Si-N) and oxynitride (Si-O-N). In this paper, we discuss our results on deposition kinetics and physical properties of these thin films. It appeared that RTLPCVD silicon-based thin films with interesting structural, electrical, and optical properties can be synthesized in our lamp-heated reactor with a tight control of process parameters such as temperature, pressure, and gas flow ratios.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy