Author:
Limin A. E.,Fowler D. B.,Houde M.,Chauvin L. P.,Sarhan F.
Abstract
Low-temperature response was measured at the whole plant and at the molecular level in wheat–rye amphiploids and in other interspecific combinations. Cold tolerance of interspecifics whose parents diverged widely in hardiness levels resembled the less hardy higher ploidy level wheat parent. Expression of the low-temperature induced Wcs120 gene of wheat (Triticum aestivum L. em. Thell.) has been associated with freezing tolerance and was used here to study mRNA and protein accumulation in interspecific and parental lines during cold acclimation. Northern and Western analyses showed that homologous mRNAs and proteins were present in all the related species used in the experiments. Cold-tolerant rye (Secale cereale L.) produced a strong mRNA signal that was sustained throughout the entire 49-day cold-acclimation period. The wheats produced a mRNA signal that had diminished after 49 days of low-temperature exposure. The wheat–rye triticales did not exhibit the independent accumulation kinetics of the cold-tolerant rye parent but, rather, more closely resembled the wheat parent in that the mRNA signal was greatly diminished after 49 days of low-temperature exposure. The influence of the rye genome was manifest in slightly greater mRNA and protein accumulation in earlier stages of acclimation. Protein accumulations in the triticales were also maintained to a somewhat greater extent than found in the wheats at the end of the 49-day acclimation period. Protein accumulations in the wheat-crested wheatgrass (Agropyron cristatum L. Gaertner) interspecific resembled that of the wheat parent. The influence of the higher ploidy level wheats of the expression of homologous gene families from wheat-related hardy diploids in interspecific combinations may in part explain the poor cold tolerance observed.Key words: cold tolerance, transcription, protein accumulation, alien gene expression, Triticeae.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献