Expression of the cold-induced wheat gene Wcs120 and its homologs in related species and interspecific combinations

Author:

Limin A. E.,Fowler D. B.,Houde M.,Chauvin L. P.,Sarhan F.

Abstract

Low-temperature response was measured at the whole plant and at the molecular level in wheat–rye amphiploids and in other interspecific combinations. Cold tolerance of interspecifics whose parents diverged widely in hardiness levels resembled the less hardy higher ploidy level wheat parent. Expression of the low-temperature induced Wcs120 gene of wheat (Triticum aestivum L. em. Thell.) has been associated with freezing tolerance and was used here to study mRNA and protein accumulation in interspecific and parental lines during cold acclimation. Northern and Western analyses showed that homologous mRNAs and proteins were present in all the related species used in the experiments. Cold-tolerant rye (Secale cereale L.) produced a strong mRNA signal that was sustained throughout the entire 49-day cold-acclimation period. The wheats produced a mRNA signal that had diminished after 49 days of low-temperature exposure. The wheat–rye triticales did not exhibit the independent accumulation kinetics of the cold-tolerant rye parent but, rather, more closely resembled the wheat parent in that the mRNA signal was greatly diminished after 49 days of low-temperature exposure. The influence of the rye genome was manifest in slightly greater mRNA and protein accumulation in earlier stages of acclimation. Protein accumulations in the triticales were also maintained to a somewhat greater extent than found in the wheats at the end of the 49-day acclimation period. Protein accumulations in the wheat-crested wheatgrass (Agropyron cristatum L. Gaertner) interspecific resembled that of the wheat parent. The influence of the higher ploidy level wheats of the expression of homologous gene families from wheat-related hardy diploids in interspecific combinations may in part explain the poor cold tolerance observed.Key words: cold tolerance, transcription, protein accumulation, alien gene expression, Triticeae.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3