Affiliation:
1. Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan, 430071, P.R. China.
2. Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
Abstract
Thyroid hormone-induced cardiac hypertrophy is similar to that observed in physiological hypertrophy, which is associated with high cardiac contractility and increased α-myosin heavy chain (α-MHC, the high ATPase activity isoform) expression. In contrast, angiotensin II (Ang II) induces an increase in myocardial mass with a compromised contractility accompanied by a shift from α-MHC to the fetal isoform β-MHC (the low ATPase activity isoform), which is considered as a pathological hypertrophy and inevitably leads to the development of heart failure. The present study is designed to assess the effect of thyroid hormone on angiotensin II-induced hypertrophic growth of cardiomyocytes in vitro. Cardiomyocytes were prepared from hearts of neonatal Wistar rats. The effects of Ang II and 3,3′,5-triiodo-thyronine (T3) on incorporations of [3H]-thymine and [3H]-leucine, MHC isoform mRNA expression, PKC activity, and PKC isoform protein expression were studied. Ang II enhanced [3H]-leucine incorporation, β-MHC mRNA expression, PKC activity, and PKCε expression and inhibited α-MHC mRNA expression in cardiomyocytes. T3 treatment prevented Ang II-induced increases in PKC activity, PKCε, and β-MHC mRNA overexpression and favored α-MHC mRNA expression. Thyroid hormone appears to be able to reprogram gene expression in Ang II-induced cardiac hypertrophy, and a PKC signal pathway may be involved in such remodeling process.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献