Author:
Phan Tuan-Nghia,Marquis Robert E
Abstract
Triclosan was found to be a potent inhibitor of the F(H+)-ATPase of the oral pathogen Streptococcus mutans and to increase proton permeabilities of intact cells. Moreover, it acted additively with weak-acid transmembrane proton carriers, such as fluoride or sorbate, to sensitize glycolysis to acid inhibition. Even at neutral pH, triclosan could inhibit glycolysis more directly as an irreversible inhibitor of the glycolytic enzymes pyruvate kinase, lactic dehydro genase, aldolase, and the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Cell glycolysis in suspensions or biofilms was inhibited in a pH-dependent manner by triclosan at a concentration of about 0.1 mmol/L at pH 7, approximately the lethal concentration for S. mutans cells in suspensions. Cells in intact biofilms were almost as sensitive to triclosan inhibition of glycolysis as were cells in suspensions but were more resistant to killing. Targets for irreversible inhibition of glycolysis included the PTS and cytoplasmic enzymes, specifically pyruvate kinase, lactic dehydrogenase, and to a lesser extent, aldolase. General conclusions are that triclosan is a multi-target inhibitor for mutans streptococci, which lack a triclosan-sensitive FabI enoyl-ACP reductase, and that inhibition of glycolysis in dental plaque biofilms, in which triclosan is retained after initial or repeated exposure, would reduce cariogenicity.Key words: triclosan, oral streptococci, glycolysis, biofilms, F-ATPase.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献