Stabilities of uncomplemented and complemented M15 β-galactosidase (Escherichiacoli) and the relationship to α-complementation

Author:

Gallagher Clare N,Huber Reuben E

Abstract

M15 β-galactosidase (Escherichia coli) is a mutant form of β-galactosidase having residues 11-41 deleted. It is an inactive dimer but can be complemented to the active tetrameric form by the addition of a peptide containing the deleted residues. The activities of uncomplemented and complemented M15 β-galactosidases decreased starting at 42°C-uncomplemented over a narrow temperature range, complemented over a broad range. This is because uncomplemented protein is a simple dimer while complemented is a mix of interacting oligomers at high temperatures. The effects of added components on stability and α-complementation are best explained by binding effects on equilibria between native forms and forms susceptible to inactivation. Mg2+ stabilized complemented protein but destabilized uncomplemented protein (10× less Mg2+ was needed for complemented protein). α-Complementation increased somewhat at low Mg2+ but decreased at high Mg2+. These effects can be explained by differential Mg2+ binding to the native and susceptible forms. The enhancement of both stability and α-complementation by Na+ can be explained by preferential binding of Na+ to the native forms of both the uncomplemented and complemented proteins. Low 2-mercaptoethanol concentrations stabilized uncomplemented M15 β-galactosidase, but high concentrations destabilized it. All concentrations destabilized complemented M15 β-galactosidase. α-Complementation was enhanced by 2-mercaptoethanol. Thus, there is a correlation between stability of the uncomplemented protein and α-complementation at low 2-mercaptoethanol owing to interactions with native forms. The lack of correlation at higher 2-mercaptoethanol probably results from precipitation by 2-mercaptoethanol. In contrast to irreversible thermal inactivation, differences in reversible stability in urea were small. This suggests that quaternary structure and Mg2+ and Na+ sites are lost at low urea concentrations and are unimportant at the urea concentrations that result in reversible denaturation. Key words: β-galactosidase, α-complementation, stability.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3