Experimental trials of the northern flying squirrel (Glaucomys sabrinus) traversing managed rainforest landscapes: perceptual range and fine-scale movements

Author:

Flaherty E. A.123,Smith W. P.123,Pyare S.123,Ben-David M.123

Affiliation:

1. Department of Zoology and Physiology, University of Wyoming, Department 3166, 1000 East University Avenue, Laramie, WY�82071, USA.

2. USDA Forest Service, Pacific Northwest Research Station, Forestry and Range Sciences Laboratory, 1401 Gekeler Lane, La Grande, OR�97850, USA.

3. Department of Natural Sciences, University of Alaska Southeast, 11120 Glacier Highway, Juneau, AK�99801, USA.

Abstract

Successful dispersal in many species may be a function of the distance at which animals can perceive a particular landscape feature (i.e., perceptual range), as well as energetic costs associated with traversing the distance towards that feature. We used a model, relating perceptual range to body size of mammals, to predict the perceptual range of the northern flying squirrel ( Glaucomys sabrinus (Shaw, 1801)) in fragmented forests of Southeast Alaska. We hypothesized that the perceptual range of flying squirrels would be 325.5–356.5 m in clearcuts and 159.7–174.9 m in second-growth stands. The distance advantage in clearcuts may, however, be lost if the cost of transport in that habitat is higher. Our results suggest that as heuristically predicted by the model, the perceptual range of flying squirrels was greater in clearcut habitats than in second-growth stands. Nonetheless, for both habitats the actual perceptual range was significantly shorter than predicted by the model. We found that precipitation, and associated cloud cover and illumination, and wind speed, which affect olfaction capabilities, influenced orientation success. Although squirrels more often oriented towards the forest edge in clearcuts, they paused more often during their movements, which may lead to higher costs of dispersing through this habitat. The application of the mass-based model to nonagricultural landscapes should be done with caution, and variables such as wind and illumination be measured concurrently. Our data illustrate that dispersing squirrels likely will not venture into managed habitats because logging creates clearcuts larger than the perceptual range of these mammals.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3