The survival of Escherichia coli from freeze–thaw damage: permeability barrier damage and viability

Author:

Calcott Peter H.,MacLeod Robert A.

Abstract

The effect of cooling rate and subsequent warming rate on survival of lactose-limited Escherichia coli was investigated. As previously reported, in the slow cooling rate range, a peak of survival was noted at 8 °C/min with survival decreasing as the cooling rate was increased or decreased from this value. Minimal survival was noted at 100 °C/min; increasing the cooling rate above 100 °C/min increased survival. At cooling rates greater than 200 °C/min, the survival became dependent on subsequent warming rates.Permeability damage, as measured by release of UV-absorbing material, potassium and β-galactosidase, and increased accessibility of glucose-6-phosphate dehydrogenase to its substrates, was dependent on the cooling rate when cells were frozen in either water or saline. For cooling rates less than about 8 °C/min, there was minimal permeability damage to cells frozen in water. However, at rates greater than this value, damage and viability were related; the lower the viability the more the damage to the permeability barrier. The relationship was strengthened by the observations that protectants which increased survival reduced damage as well and that at ultrarapid cooling rates where survivals were dependent on warming rates, the extent of damage was likewise dependent on the warming rate.Saline frozen cells were damaged by freezing and thawing more than comparable water-frozen cells over the whole cooling rate range. At cooling rates less than 8 °C/min, frozen in water, permeability damage of cells frozen in saline increased as the cooling rate decreased. As the cooling rate was increased from 8 °C/min, the damage increased as viability decreased.The relevance of these findings to the two-factor hypothesis of cell death is discussed.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3