Author:
Clark Tod A,Edel Andrea L,Heyliger Clayton E,Pierce Grant N
Abstract
A novel black tea decoction containing vanadate has successfully replaced insulin in a rat model of insulin-dependent diabetes but is untested in non-insulin-dependent diabetic animals. A tea-vanadate decoction (TV) containing 30 or 40 mg sodium orthovanadate was administered by oral gavage to two groups of Zucker diabetic fatty rats and a conventional water vehicle containing 30 or 40 mg of sodium orthovanadate to two others. In the latter group receiving the 30-mg dose, vanadate induced diarrhea in 50% of the rats and death in 10%. In contrast, TV-treated rats had no incidence of diarrhea and no deaths. Symptoms were more severe in both groups with higher vanadate doses, so these were discontinued. After ~16 weeks, the level of vanadium in plasma and tissue extracts was negligible in a further group of untreated rats but highly elevated after vanadate treatment. Vanadium levels were not significantly different between the TV-treated diabetic rats and the diabetic rats given vanadate in a water vehicle. Over the 115 days of the study, blood glucose levels increased from ~17 to 25 mmol/L in untreated diabetic rats. This was effectively lowered (to <10 mmol/L) by TV treatment. Fasting blood glucose levels were 5, 7, and 20 mmol/L in control (nondiabetic, untreated), TV-treated and untreated diabetic rats, respectively. Rats required treatment with TV for only ~50% of the days in the study. Increase in body mass during the study was significantly lower in untreated diabetic rats (despite higher food intake) than the other groups. Body mass gain and food intake were normal in TV-treated rats. Water intake was 28 mL/rat daily in control rats, 130 mL/rat daily in untreated diabetic rats, and 52 mL/rat daily in TV-treated diabetic rats. Plasma creatinine and aspartate aminotransferase levels were significantly depressed in untreated diabetic rats, and TV treatment normalized this. Our results demonstrate that a novel oral therapy containing black tea and vanadate possesses a striking capacity to regulate glucose and attenuates complications in a rat model of type II diabetes. Key words: diabetes mellitus, tea, glycemia, type II diabetes.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献