Abstract
This article reviews data at the in vivo whole animal and human level. The importance of both flow and pressure recordings and of the methods used to record these variables is emphasized. Exogenous administration of endothelin-1 evokes a transient depressor response mediated by endothelial endothelinBreceptors, but the predominate effect of endothelin-1 is a sustained increase in blood pressure resulting from increases in total peripheral resistance. Resistance in the superior mesenteric, renal, and hindquarter vascular beds of animals and forearm resistance in humans is increased. Both endothelinAand, to a lesser extent, endothelinBreceptors on vascular smooth muscle mediate the increases in resistance. Endothelin-1 evokes decreases in the precapillary/postcapillary resistance ratio, resulting in increased capillary pressure and net transcapillary filtration. Endothelin-1 evokes increases in mean circulatory filling pressure in animals and in constriction of the human dorsal hand vein. This venoconstrictor activity is mediated primarily through endothelinAand to a lesser extent endothelinBreceptors. Endogenously generated endothelin contributes to the hemodynamic effects of angiotensin and vasopressin in certain animal models of hypertension. Antagonists of endothelin evoke modest hemodynamic changes in healthy humans and in some healthy animals, and they decrease vascular resistance dramatically in several salt-sensitive rat models of hypertension and also in some hypertensive human subjects. Thus, endogenously generated ET appears to play a modest role in the healthy organism, but it likely plays a major role in many pathophysiological states as described in companion articles in this issue.Key words: hemodynamics, resistance, fluid exchange, capacitance, endothelin.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献