On the “elastic” stiffness in a high-cycle accumulation model for sand: a comparison of drained and undrained cyclic triaxial tests

Author:

Wichtmann Torsten1,Niemunis Andrzej1,Triantafyllidis Theodor1

Affiliation:

1. University of Karlsruhe, Institute for Soil Mechanics and Rock Mechanics, Engler-Bunte Ring 14, 76131 Karlsruhe, Germany.

Abstract

High-cycle accumulation (HCA) models may be used for the prediction of settlements or stress relaxation in soils due to a large number of cycles (N > 103) with a relatively small-strain amplitude (εampl < 10−3). This paper presents a discussion of the elastic stiffness, [Formula: see text], used in the basic constitutive equation of an HCA model, [Formula: see text], where [Formula: see text] is the trend of effective stress, [Formula: see text] is the trend of strain, [Formula: see text] is the rate of strain accumulation, and [Formula: see text] is the plastic strain rate. [Formula: see text] interrelates the “trends” of stress and strain evolution. For the experimental assessment of the bulk modulus, [Formula: see text], the rate of pore-water pressure accumulation, [Formula: see text], in undrained cyclic triaxial tests and the rate of volumetric strain accumulation, [Formula: see text], in drained cyclic tests have been compared. The pressure-dependent bulk modulus, K, was quantified from 15 pairs of drained and undrained tests with different consolidation pressures and stress amplitudes. It is demonstrated that both the curves [Formula: see text] in the drained tests and u(N) in the undrained tests are well predicted by the authors’ HCA model if the elastic stiffness is determined using the method described in the present paper. A simplified determination of K from the unloading and reloading curve in an oedometric compression test is discussed.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference13 articles.

1. Hypoplastic model for cohesionless soils with elastic strain range

2. A high-cycle accumulation model for sand

3. Sawicki, A. 2004. Modelling earthquake-induced phenomena in the Izmit Bay coastal area. In Proceedings of the International Conference on Cyclic Behaviour of Soils and Liquefaction Phenomena, CBS04. Bochum, Germany, 31 March – 2 April 2004. Edited by T. Triantafyllidis. Taylor & Francis, London. pp. 431–440.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3