Influence of aging and long-term unloading on the structure and function of human skeletal muscleThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic Machines, and has undergone the Journal’s usual peer review process.

Author:

Trappe Todd1

Affiliation:

1. Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA (e-mail: ).

Abstract

Understanding the quantitative and qualitative changes in skeletal muscle that control changes in function is crucial in the development of countermeasures to the loss of skeletal muscle function observed with real and simulated microgravity exposure (i.e., unloading) and with aging in humans. Qualitative changes that could influence the force and power producing properties of skeletal muscle are changes in the distribution of the 3 isoforms of the main motor protein myosin heavy chain (MHC), as well as the abundance of MHC, actin (the other main contractile protein), and the force distributing the connective tissue network. Numerous studies have examined quantitative and qualitative changes in skeletal muscle, from the whole muscle to the single myofiber from individuals undergoing real and simulated space flight for a few weeks to several months, as well as from aging men and women. When considering the relative content of the main functional and structural elements (i.e., myosin, actin, collagen), it appears that human muscle appropriately scales changes in size of 10%–40% induced over a relatively short time period (1–3 months) and over the lifespan (in humans 20 to 90+ years old). The main qualitative change with unloading and aging is a redistribution of the 3 MHC isoforms, which have vastly different contractile characteristics. It is now known that the response of skeletal muscle to unloading is muscle and gender specific. In summary, changes in muscle mass (quantity) combined with the alterations in MHC distribution (quality) are the primary determinants of changes in muscle function with unloading and aging. These parameters are the key components of muscle that should be targeted with countermeasures for conditions related to muscle loss, along with considerations for muscle- and gender-specific responses.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3