Ectonucleotidase expression profile and activity in human cervical cancer cell lines

Author:

Beckenkamp Aline1,Santana Danielle Bertodo1,Bruno Alessandra Nejar2,Calil Luciane Noal1,Casali Emerson André3,Paccez Juliano Domiraci4,Zerbini Luiz F.4,Lenz Guido5,Wink Márcia R.6,Buffon Andréia1

Affiliation:

1. LABC – Laboratory of Biochemical and Cytological Analysis, Analysis Department, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, bairro Santana, CEP 90610-000, Porto Alegre, RS, Brazil.

2. Federal Institute of Education, Science and Technology of Rio Grande do Sul, Porto Alegre, RS, Brazil.

3. Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

4. International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa.

5. Laboratório de Sinalização Celular, Departamento de Biofísica, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.

6. Laboratório de Biologia Celular, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, RS, Brazil.

Abstract

Cervical cancer is the third most frequent cancer in women worldwide. Adenine nucleotide signaling is modulated by the ectonucleotidases that act in sequence, forming an enzymatic cascade. Considering the relationship between the purinergic signaling and cancer, we studied the E-NTPDases, ecto-5′-nucleotidase, and E-NPPs in human cervical cancer cell lines and keratinocytes. We evaluated the expression profiles of these enzymes using RT-PCR and quantitative real-time PCR analysis. The activities of these enzymes were examined using ATP, ADP, AMP, and p-nitrophenyl-5′-thymidine monophosphate (p-Nph-5′-TMP) as substrate, in a colorimetric assay. The extracellular adenine nucleotide hydrolysis was estimated by HPLC analysis. The hydrolysis of all substrates exhibited a linear pattern and these activities were cation-dependent. An interesting difference in the degradation rate was observed between cervical cancer cell lines SiHa, HeLa, and C33A and normal imortalized keratinocytes, HaCaT cells. The mRNA of ecto-5′-nucleotidase, E-NTPDases 5 and 6 were detectable in all cell lines, and the dominant gene expressed was the Entpd 5 enzyme, in SiHa cell line (HPV16 positive). In accordance with this result, a higher hydrolysis activity for UDP and GDP nucleotides was observed in the supernatant of the SiHa cells. Both normal and cancer cells presented activity and mRNAs of members of the NPP family. Considering that these enzymes exert an important catalytic activity, controlling purinergic nucleotide concentrations in tumors, the presence of ectonucleotidases in cervical cancer cells can be important to regulate the levels of extracellular adenine nucleotides, limiting their effects.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3