Comparative in vitro evaluation of transportability and toxicity of capecitabine and its metabolites in cells derived from normal human kidney and renal cancers

Author:

Damaraju Vijaya L.1,Mowles Delores2,Wilson Marnie2,Kuzma Michelle2,Cass Carol E.1,Sawyer Michael B.13

Affiliation:

1. Department of Oncology, University of Alberta, Edmonton, Alta., Canada.

2. Department of Experimental Oncology, Edmonton, Alta., Canada.

3. Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.

Abstract

The goal of this study was to understand roles of nucleoside and nucleobase transport processes in capecitabine pharmacology in cells derived from human renal proximal tubule cells (hRPTCs) and three human renal cell carcinoma (RCC) cell lines, A498, A704, and Caki-1. Human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) mediated activities and a sodium-independent nucleobase activity were present in hRPTCs. In hRPTCs, uptake of 5′-deoxy-5-fluorouridine (DFUR), a nucleoside metabolite of capecitabine, was pH dependent with highest uptake seen at pH 6.0. In RCC cell lines, hENT1 was the major nucleoside transporter. Nucleobase transport activity was variable among the three RCC cell lines, with Caki-1 showing the highest and A498 showing the lowest activities. Treatment of RCC cell lines with interferon alpha (IFN-α) increased thymidine phosphorylase levels and prior treatment of RCC cell lines with IFN-α followed by 5-FU or DFUR resulted in enhanced sensitivity of all cell lines to 5-FU and two of three cell lines to DFUR. We report for the first time a nucleobase transport activity in hRPTCs and RCC cell lines. In addition, our in vitro cytotoxicity results showed that RCC cell lines differed in their response to 5-FU and DFUR and prior treatment with IFN-α potentiated cytotoxic response to metabolites of capecitabine.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3