Impacts of shrub removal on snow and near-surface thermal conditions in permafrost terrain adjacent to the Dempster Highway, NT, Canada

Author:

Cameron Emily A.1ORCID,Lantz Trevor C.1ORCID,Kokelj Steven V.2ORCID

Affiliation:

1. School of Environmental Studies, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada

2. Northwest Territories Geological Survey, Government of the Northwest Territories, Yellowknife, Canada

Abstract

The Peel Plateau, NT, Canada, is an area underlain by warm continuous permafrost where changes in soil moisture, snow conditions, and shrub density have increased ground temperatures next to the Dempster Highway. In this study, ground temperatures, snow, and thaw depth were monitored before and after tall shrub removal (2014). A snow survey after tall shrub removal indicated that snow depth decreased by a third and lowered winter ground temperatures when compared with control tall shrub sites. The response of ground temperatures to shrub removal depended on soil type. The site with organic soils had cooler winter temperatures and no apparent change in summer temperatures following shrub removal. At sites with mineral soil, moderate winter ground cooling insufficiently counteracted increases in summer ground heat flux caused by canopy removal. Given the predominance of mineral soil along the Dempster, these observations suggest tall shrub removal is not a viable short-term permafrost management strategy. Additionally, the perpendicular orientation of the Highway to prevailing winter winds stimulates snow drift formation and predisposes the site to warmer permafrost temperatures, altered hydrology, and tall shrub proliferation. Subsequent research should explore the effectiveness of tall shrub removal at sites with colder winter conditions or different snow accumulation patterns.

Funder

Cumulative Impacts Monitoring Program

Canada Foundation for Innovation

Natural Sciences and Engineering Research Council of Canada

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3