A convenient route to distannanes, oligostannanes, and polystannanes

Author:

Khan Aman1,Gossage Robert A.1,Foucher Daniel A.1

Affiliation:

1. Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.

Abstract

The quantitative conversion of the tertiary stannane (n-Bu)3SnH (2) into (n-Bu)6Sn2 (4) was achieved by heating the neat hydride material under low pressure or under closed inert atmosphere conditions. A 31% conversion of Ph3SnH (3) to Ph6Sn2 (5) was also observed under low pressure; however, under closed inert atmosphere conditions afforded Ph4Sn (6) as the major product. A mixed distannane, (n-Bu)3SnSnPh3 (7), can also be prepared in good yield utilizing an equal molar ratio of 2 and 3 and the same reaction conditions used to prepare 4. This solvent-free, catalyst-free route to distannanes was extended to a secondary stannane, (n-Bu)2SnH2 (8), which yielded evidence (NMR) for hydride terminated distannane H(n-Bu)2SnSn(n-Bu)2H (9), the polystannane [(n-Bu)2Sn]n (10), and various cyclic stannanes [(n-Bu)2Sn]n=5,6 (11, 12). Further evidence for 10 was afforded by gel permeation chromatography (GPC) where a broad, moderate molecular weight, but highly dispersed polymer, was obtained (Mw = 1.8 × 104 Da, polydispersity index (PDI) = 6.9) and a characteristic UV–vis absorbance (λmax) of ≈370 nm observed.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reactivity of the magnesium bisamide complex towards C=C=O-, N=C=O-, and N—N=O-containing substrates;Russian Chemical Bulletin;2024-03

2. Cationic Cobalt–Thiolate Complexes for the Dehydrogenative Coupling of nBu3SnH;Organometallics;2022-03-09

3. Molecular Main Group Metal Hydrides;Chemical Reviews;2021-08-27

4. Metal-Free Bond Activation by Carboranyl Diphosphines;Journal of the American Chemical Society;2021-07-13

5. Organosilicon and Related Group 14 Polymers;Reference Module in Chemistry, Molecular Sciences and Chemical Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3