Affiliation:
1. College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
2. Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Abstract
Targeting a G-quadruplex with chemical small molecules is a useful strategy for gene therapy for disease. The guanine-rich sequence d(5′-TG1G2CCTG3G4G5CG6G7G8ACTG9G10G11-3′) in the HIV-1 promoter can form a G-quadruplex structure. In this study, circular dichroism was performed to study the conformation and thermal stability of the HIV-1 G-quadruplex before and after adding small molecules. A DMS footprinting assay was used to identify which guanosine can be integrated into the G-quadruplex structure. Electrospray ionization mass spectrometry was used to evaluate the binding affinities of the small molecules with the G-quadruplex. Our results showed that G1, G2, G3, G4, G7, G8, G9, and G10 of the above oligonucleotides formed a two G-tetrad antiparallel G-quadrulex, and nitidine chloride was found to have the highest binding affinity toward the HIV-1 G-quadruplex among the eight studied small molecules. The Tm value of the G-quadruplex was enhanced from 56.6 to 63.2 °C when fourfold nitidine chloride was added. This is potentially a novel approach for anti-HIV-1 drug development.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献