Interaction between 2-(p-toluidino)-6-naphthalenesulfonic acid sodium salt (TNS) and β-lactoglobulin

Author:

Li Huiqing11,Wei Jing11,Dong Youming11,Yu Zhiyue11

Affiliation:

1. Chemistry Department, Xinzhou Teachers’ University, Xinzhou, Heping Street, Xinzhou City, PR, China.

Abstract

The major bovine milk protein β-lactoglobulin (β-LG), a member of the lipocalin superfamily, can bind a wide range of ligands and act as a transporter. In the present study, the combination of the hydrophobic molecule 2-(p-toluidino)-6-naphthalenesulfonic acid sodium salt (TNS) with β-LG was analyzed using fluorescence spectroscopy and AutoDock modeling to discern the major binding sites of the protein and to determine the capacity of other small ligands to bind with β-LG by utilizing TNS as a reference. The experimental data indicate that in a neutral pH environment, TNS is located in the hydrophobic domain of the protein, 2.5 nm away from the Trp19 residues of β-LG. The binding constant of the small molecule to β-LG is (3.30 ± 0.32) × 106 (mol L–1)−1. An interaction model between the ligand and β-LG was developed, and AutoDock modeling also demonstrates that the ligand is located in the central hydrophobic calyx of β-LG within the regions covered by the Förster radius of the Trp19–ligand pair. Although the interaction between the ligand and β-LG is affected by increasing ion strength, pH change, and heat treatment, the complex is maintained until the secondary structure of β-LG is destroyed. Additionally, the ligand binding stabilizes the folding of β-LG. The binding constants of sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) to β-LG were obtained using competitive ligand binding measurements. With a sensitive fluorescence signal and stable complex, the ligand could be utilized as a reference to detect the binding of other small ligands to β-LG.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3