Affiliation:
1. Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran.
2. Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Abstract
By using density functional theory calculations, the chemical functionalization of finite-sized (5,0) and (6,0) carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) by different carbonyl derivatives –COX (X = H, CH3, OCH3, OH, and NH2) is studied in terms of geometrical and electronic structure properties. Also, the benefits of local reactivity descriptors is studied to characterize the reactive sites of the external surface of the tubes. These local reactivity descriptors include the electrostatic potential VS(r) and average local ionization energy ĪS(r) on the surfaces of these nanotubes. The estimated ĪS(r) values show that the functionalized CNTs tend to activate the surface toward electrophilic/radical attack. Results show that the chemical functionalization of CNTs leads to the reduction of VS(r) values and therefore enhances the surface reactivity. On the other hand, BNNTs resist chemical functionalization due to the negligible decrease in the VS,min and ĪS,min values. Generally, in contrast to BNNTs, the chemical functionalization of CNTs can considerably improve their surface reactivity. To verify the surface reactivity pattern based on the chosen reactivity descriptors, the reaction energies for the interaction of an H + ion or hydrogen radical with external surface of the functionalized CNTs and BNNTs are calculated. A general feature of all studied systems is that stronger potentials are associated with regions of higher curvature.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献