Voltammetric determination of hexestrol based on the enhanced effect of a polymerized 3-decyl-1-(3-pyrrole-propyl)imidazolium tetrafluoroborate ionic liquid film electrode

Author:

Wu Yingying11,Chen Xuemin11,Wang Yanying11,Li Chunya11

Affiliation:

1. Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.

Abstract

3-Decyl-1-(3-pyrrole-propyl)imidazolium tetrafluoroborate (DPIMBF4) ionic liquid was synthesized and characterized. DPIMBF4 ionic liquid not only possesses a pyrrole group that can be electrochemically polymerized onto a glassy carbon electrode surface by using a multipotential step technique, but it also contains a long carbon chain that can improve the stability of a polymerized ionic liquid film in an aqueous solution. X-ray photoelectron spectroscopy, scanning electron microscope, and electrochemical impedance spectroscopy were used to confirm the successful polymerization of the ionic liquid. Voltammetry was employed to investigate the electrochemical behaviors of an environmental estrogen, hexestrol, at the polymerized ionic liquid film electrode. Hexestrol presents an irreversible oxidation peak at the polymerized DPIMBF4 ionic liquid film electrode. Compared with the bare glassy carbon electrode, the oxidation peak of hexestrol increased significantly on the polymerized DPIMBF4 ionic liquid film electrode. The oxidation peak current was found to be linearly related to hexestrol concentration in the range of 5.0 × 10−9 to 1.0 × 10−5 mol L−1. The detection limit was calculated to be 1.25 × 10−9 mol L−1 (S/N = 3). Hexestrol in crucian meat was determined using the polymerized DPIMBF4 ionic liquid film electrode with good accuracy.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3