A comparison of hydrocarbon and alkali metal response in the flame ionization detector used in subcritical water chromatography

Author:

Scott Andrea F.11,Thurbide Kevin B.11,Quickfall Danica11

Affiliation:

1. Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada.

Abstract

The flame ionization detector (FID) response toward alkali metals and hydrocarbons was compared. Optimal hydrogen flame gas flow rates were found near 40 mL/min for hydrocarbon response and 80 mL/min for alkali response. While each displayed a linear FID response, alkali metals produced several orders of magnitude greater detector sensitivity than hydrocarbons. Of note, KCl, NaCl, LiCl, and ethanol yielded respective FID sensitivity of about 7500, 980, 130, and 1 mV/μg analyte. This was subsequently demonstrated to greatly alter the FID response of organic salts. For example, while formic acid is normally unresponsive in an FID, its potassium salt could be readily detected here at picogram levels. Conversely, this phenomenon also rendered the FID unsuitable for use with buffered mobile phases containing such salts. In particular, FID background and baseline noise levels for formic acid – sodium formate buffers were about 10 times larger than equivalent experiments with methanol–water and up to two orders of magnitude larger than pure water. Overall, the results show that alkali metals respond much stronger in the FID than do hydrocarbons. Accordingly, their presence in organic analytes or mobile phases must therefore be accounted for when using this detector, particularly in areas such as subcritical water chromatography where it is commonly employed.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3