Microstructural study of cetyltrimethylammonium bromide / 1-butanol / salt / water system — SANS and 2D-NOESY analysis

Author:

Kuperkar K.1,Patriati A.2,Putra E.G.R.2,Singh K.3,Marangoni D.G.3,Bahadur P.1

Affiliation:

1. Department of Chemistry, Veer Narmad South Gujarat University, Surat 395 007, India.

2. Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia, BATAN, Kawasan Puspiptek Serpong, Tangerang 15314, Indonesia.

3. Department of Chemistry, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.

Abstract

Interaction of 1-butanol (BuOH) with a cationic surfactant, cetyltrimethylammonium bromide (CTAB) aggregate, in water and salt solution has been studied by viscometry, small-angle neutron scattering (SANS), and 2D-NMR techniques. The experimental results are interpreted in terms of a possible micellar growth occurring in the presence of added alcohol and salt. It was observed that the addition of BuOH strongly influences the viscosity of the CTAB/salt micellar system, reaching a peak viscosity at about 0.5% w/v of BuOH over a range of salt concentrations. Scattering measurements support the idea of a structural transformation by the observation of a spectral shift (broadening) as the total concentration of surfactant varies, indicating a decrease in the intermicellar distance and narrow size distribution. The chemical shift from 1H NMR measurements gave complementary data on the solubilization of BuOH in CTAB micelles, whereas the expected locus (site) of the additive added to the surfactant including the dynamics of the molecules in micellar aggregates were successfully correlated by significant and positive cross peaks obtained from two-dimensional nuclear Overhauser effect spectroscopy (2D-NOESY).

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3