Soil carbon dioxide fluxes and profile concentrations in two boreal forests

Author:

Billings S A,Richter D D,Yarie J

Abstract

Because a large fraction of the world's carbon exists in the soil of boreal forests, understanding how soil temperature and moisture affect soil respiration is vital for predicting soil response to climate change. We measured soil respiration and CO2 concentrations within soils of floodplain and upland forests in interior Alaska from 1996 to 1997. At each site, a 0.10-ha-area shelter was constructed that prevents summer precipitation from infiltrating into the soil. Measurements of soil profile CO2, soil respiration, soil temperature, and soil moisture were made inside (treatment) and outside (control) the sheltered areas through two growing seasons and the winter of 1996-1997. Sheltered soils had decreased profile concentrations and surface flux of CO2. At the upland control site, individual flux rates ranged from 0.10 to 0.95 g·m-2·h-1 in the summer and at sites under the shelter from 0.10 to 0.53 g·m-2·h-1. Rates at the floodplain control site ranged from 0.11 to 1.45 g·m-2·h-1 and under the shelter from 0.11 to 0.55 g·m-2·h-1. Fick's Law could predict surface CO2 flux when the CO2 concentration gradient within the profile accurately represented the soil surface gradient and biological sources and sinks of the gas did not overwhelm flux calculations.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3