Assessment of residual slash coverage using UAVs and implications for aspen regeneration

Author:

Sealey Landon L.12,Van Rees Ken C.J.12

Affiliation:

1. Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada

2. Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.

Abstract

Proper redistribution of residual slash following harvesting is crucial for ensuring successful regeneration and continued health in trembling aspen (Populus tremuloides) forests. As traditional methods of measuring residual slash are a strenuous and tedious process, the objective of this study was to develop a new, faster, and more detailed method to assess residual slash distribution for entire harvested blocks. This study also aimed to assess the influence residual slash coverage had on the success of aspen regeneration 1 year after winter harvesting. Using high-resolution UAV imagery and maximum likelihood supervised image classification, residual slash was differentiated from the underlying forest floor. Overall, classification accuracy ranged between 85% and 96% with the highest accuracy occurring when aerial imagery was collected at the beginning of the second spring following winter harvesting. Slash distribution was quite consistent across harvested blocks, with 92% of harvested blocks experiencing <33% coverage. There was no relationship between the level of aspen regeneration following 1 year of growth and percentage slash coverage up to 60%. No vegetation plots occurred in areas with >60% slash coverage; therefore, it is unknown whether aspen regeneration will be affected in areas with higher slash coverage.

Publisher

Canadian Science Publishing

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3