Influence of waterborne cations on zinc uptake and toxicity in rainbow trout,Oncorhynchus mykiss

Author:

Alsop Derek H,Wood Chris M

Abstract

The effects of waterborne cations on65Zn uptake, Zn toxicity, and relationships with Ca uptake were examined in juvenile rainbow trout, Oncorhynchus mykiss, in soft water. Whole-body Zn uptake (waterborne [Zn] = 100 μg·L-1= 1.5 μM) was greatly reduced by a variety of cations. This reduction was directly related to the concentration of positive charges, regardless of which ion carried that charge. Thus, 1.0 mM Na+, K+, NH4+, and N-methyl-D-glucamine+and 0.5 mM Mg2+(divalent) reduced Zn uptake to a similar extent (approx. 50%), indicating a relatively nonspecific competition for anionic sites on the gill. Ca2+was an exception and was more potent at reducing Zn uptake, likely because only Ca2+would also compete for absorption. Although Na+and Mg2+were able to markedly reduce Zn uptake, they had no effect on Zn toxicity (measured with 96-h LC50tests), a result paralleled by their inability to restore Ca2+uptake that was inhibited by Zn. In contrast, Ca2+reduced Zn toxicity and restored Ca2+uptake. These results partially dissociate Zn uptake from Zn toxicity, implicate disturbed Ca2+uptake as the toxic mechanism, and have profound implications for water quality criteria where Ca2+and Mg2+(the two "hardness" cations) are traditionally considered to be equally protective.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3