Author:
Rudra Sibaprasad,Talukdar Himansu,Kundu Kiron K.
Abstract
Autoionization constants (Ks) of aqueous mixtures of 1, 2, and 4 m sodium nitrate used as an ionic cosolvent system have been determined from emf measurements of the cell: Pt, H2 (g, 1 atm)/KOH (m1) KCl (m2), solvent/AgCl–Ag at five equidistant temperatures ranging from 15–35 °C. The standard free energies (ΔG0) and entropies (ΔS0) of autoionisation of the solvents were then evaluated from these data. Relative free energies (ΔG0) and entropies of (ΔS0)of autoionization of the solvents when coupled with the previously determined transfer free energies [Formula: see text] and entropies [Formula: see text] of H+ yielded [Formula: see text][Formula: see text],[Formula: see text] and [Formula: see text]. Values of [Formula: see text] and [Formula: see text] obtained after correcting for [Formula: see text], as well as [Formula: see text] and [Formula: see text]obtained after correcting the "cavity effect" and Born-type electrostatic effect suggests that while the "basicity" of the aqueous NaNO3 solutions decreases, the "acidity" more or less increases with NaNO3 concentration. The observed [Formula: see text]– and [Formula: see text]–composition profiles were also examined in the light of Kundu et al.'s four-step transfer process and the involved order–disorder phenomena, respectively, as proposed earlier.Standard free energies [Formula: see text] and entropies [Formula: see text] of transfer of p-nitroaniline (pNA) and benzoic acid (HBz) for the solvent system have also been determined from solubility measurements at different temperatures. The observed [Formula: see text]–and [Formula: see text]–composition profiles appear to reflect the salting-out effect of the salt and the [Formula: see text]–and [Formula: see text]–composition profiles confirm the applicability of either of these quantities rather than [Formula: see text], as a better structural probe both for aquo-ionic and aquo-organic solvents.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献