Behaviour of light-gauge steel-frame – wood structural panel shear walls

Author:

Chen C Y,Boudreault F A,Branston A E,Rogers C A

Abstract

The second phase of the research project to develop a shear wall design method that could be used in conjunction with the 2005 National Building Code of Canada involved evaluation of the performance characteristics of the tested steel-frame – wood structural panel shear walls. A nonlinear and pinched resistance versus deflection hysteretic behaviour was exhibited, although in most cases the walls could sustain large inelastic deformation cycles with limited strength degradation. A significant amount of energy could be dissipated under reversed cyclic loading. Walls 1220 mm and 2440 mm in length were able to develop their maximum capacity at similar displacement levels; however, the 610 mm long walls required significantly larger displacements prior to reaching their ultimate shear resistance. The performance of the walls was directly linked to the behaviour of the sheathing-to-framing screw connections, except in one case in which local buckling of the chord studs controlled the ultimate shear resistance. Given the behaviour observed during testing, this type of wall construction can be relied on to resist lateral loading, including earthquake effects in the inelastic range, assuming the designer ensures that failure of the wall is limited to the sheathing-to-framing connections.Key words: shear wall, light-gauge steel, wood structural panel, earthquake, wind.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3