Fire, climate change, and forest resilience in interior AlaskaThis article is one of a selection of papers from The Dynamics of Change in Alaska's Boreal Forests: Resilience and Vulnerability in Response to Climate Warming.

Author:

Johnstone Jill F.12345,Chapin F. Stuart12345,Hollingsworth Teresa N.12345,Mack Michelle C.12345,Romanovsky Vladimir12345,Turetsky Merritt12345

Affiliation:

1. Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.

2. Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.

3. USDA Forest Service, PNW Research Station, Boreal Ecology Cooperative Research Unit, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.

4. Department of Botany, University of Florida, P.O. Box 118526, Gainesville, FL 32611-8526, USA.

5. Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk, Fairbanks, AK 99775-7320, USA.

Abstract

In the boreal forests of interior Alaska, feedbacks that link forest soils, fire characteristics, and plant traits have supported stable cycles of forest succession for the past 6000 years. This high resilience of forest stands to fire disturbance is supported by two interrelated feedback cycles: (i) interactions among disturbance regime and plant–soil–microbial feedbacks that regulate soil organic layer thickness and the cycling of energy and materials, and (ii) interactions among soil conditions, plant regeneration traits, and plant effects on the environment that maintain stable cycles of forest community composition. Unusual fire events can disrupt these cycles and trigger a regime shift of forest stands from one stability domain to another (e.g., from conifer to deciduous forest dominance). This may lead to abrupt shifts in forest cover in response to changing climate and fire regime, particularly at sites with intermediate levels of moisture availability where stand-scale feedback cycles are only weakly constrained by environmental conditions. However, the loss of resilience in individual stands may foster resilience at the landscape scale, if changes in the landscape configuration of forest cover types feedback to stabilize regional patterns of fire behavior and climate conditions.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3