Regulation of the dephosphorylation of glycogen phosphorylase a and synthase b by glucose and caffeine in isolated hepatocytes

Author:

Kasvinsky Peter J.,Fletterick Robert J.,Madsen Neil B.

Abstract

Synergistic regulation of glycogen phosphorylase a by the competitive inhibitors glucose and caffeine in vitro indicates a possible physiological role for the negative effector site which binds caffeine (nucleoside site). In intact viable hepatocytes glucose promotes the phosphorylase a to b conversion by phosphorylase phosphatase. This conversion is considered to be a necessary prelude to the activation of glycogen synthase by phosphatase and of importance in hepatic regulation of glucose homeostasis. The effects of glucose and(or) caffeine on the conversion of phosphorylase a to b and synthase b to a were studied. Assays of phosphorylase a were used which limited synergistic inhibition (in the assay) by these ligands. Such an approach is necessary to achieve an accurate measure of phosphatase activity in the viable hepatocyte when the combination of ligands is used. The data indicate that in the presence of caffeine and glucose together, the rate of loss of phosphorylase a is significantly increased (1.7-fold) over that in the presence of glucose alone. Phosphorylase phosphatase is activated. The sequential activation of glycogen synthase was also accelerated in the presence of both ligands. The results are consistent with an in vivo function for the nucleoside site, similar to that of glucose. A controlling role for phosphorylase in the regulation of glycogen metabolism by glucose is supported. Although the existence and nature of an intracellular effector is as yet unknown, crystallographic analyses of phosphorylase a crystals soaked in perchloric acid extracts of liver demonstrate that the negative effector site binds a natural metabolite.

Publisher

Canadian Science Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3