Affiliation:
1. Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada.
2. Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada.
Abstract
A study was conducted to determine if consideration of ecological site classification in combination with stand age would describe total ecosystem carbon (C) better than consideration of just stand age alone. The research was conducted in the 9250 ha University of Northern British Columbia/The University of British Columbia Aleza Lake Research Forest in central British Columbia. Over three field seasons (2003–2005), 38, 72, and 27 plots were established in mesic, subhygric, and hygric stands, respectively, with stand ages ranging from 5 to 350+ years. Mineral soil C stocks were significantly influenced by moisture regime, where hygric > subhygric > mesic (93, 77, and 65 t C·ha–1, respectively). Mineral soil and forest floor C stocks were not related to stand age, indicating their resilience to partial-cut and clear-cut forest harvesting systems historically implemented throughout the study area. Subhygric stands had the highest total ecosystem C stocks in the Aleza Lake Research Forest, having approximately 18% more C than mesic and hygric stands, principally due to higher mineral soil C stocks (than mesic stands) and improved C sequestration in large trees (over hygric stands). Consideration of ecological site classification in addition to stand age information improved total ecosystem C stock estimates over the use of stand age alone.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献