Author:
Howard J. A.,Ingold K. U.
Abstract
The effect of deuterium substitution on the absolute rate constants for the bimolecular chain termination process in the oxidation of styrene indicates that the α-hydrogen is abstracted in this reaction. The first order chain termination process is suppressed both by deuteration of styrene at the α-position and by the addition of heavy water. A possible mechanism for this termination is proposed. There appear to be small secondary deuterium isotope effects in the propagation reaction.The overall oxidation rates and the propagation rate constants are increased by the addition to the aromatic ring of both electron-attracting and electron-releasing substituents. This is attributed in the former case to the increased stability of the resulting styryl radicals and in the latter case to the increased stability of a dipolar transition state. In hydrogen atom abstraction from 2,6-di-t-butyl-4-methylphenol, the peroxy radical from 3-chlorostyrene is more reactive than that from styrene which, in turn, is more reactive than the peroxy radical from 4-methoxy-styrene.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献