A summary of electromagnetic studies on the Abitibi-Grenville transect

Author:

Boerner David E,Kurtz Ron D,Craven James A

Abstract

Electromagnetic surveys on the Abitibi-Grenville Lithoprobe transect have elucidated a number of conductivity signatures that can be genetically linked to Precambrian tectonic processes. Some major fault zones are moderately conductive, possibly signalling graphite deposition from a mantle CO2 flux along crust-penetrating fault systems. However, conductive (graphitic) metasedimentary rocks characteristic of foreland basins are apparently absent from the transect area. A weak inverse correlation between metamorphic grade and electrical conductivity was observed by following rock units across the Grenville Front into high-grade equivalents within the parautochthonous belt. A uniformly conductive mid-crustal layer extends across the Grenville Front, apparently without change in character. The existence of this ubiquitous mid-crustal conductor has been interpreted to mean that electrical conductivity is controlled by the present-day pressure, temperature, and fluid saturation of the lower crust, independent of ancient structure, mineralogy, or metamorphic grade. Lower crustal (upper mantle?) electrical anisotropy is pervasive across the transect area. An apparent spatial correlation of conductivity anisotropy with Archean tectonic deformation patterns has been interpreted to indicate that the lithosphere has remained intact since the Neoarchean.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3