Abstract
Fusion-energy development has reached an exciting stage with the agreement by seven nations, representing over half the world population, to build the International Thermonuclear Experimental Reactor (ITER) and demonstrate the scientific and technological feasibility of magnetic fusion. High-Z materials such as tungsten are used in plasma-facing components, and contamination of the plasma by sputtered impurities must be controlled to limit radiation losses. Spectroscopic diagnostics will be used to monitor impurity influx and EBIT has played a key role in generating the atomic data necessary to interpret the spectroscopic observations. In this paper, we focus on the key contributions that EBIT devices are uniquely positioned to make in the spectroscopic diagnostics of next-step burning plasmas such as ITER and list specific areas where new data are needed. PACS Nos.: 32.30.Jc, 32.30.Rj, 52.40.Hf, 52.55.Fa, 52.70.Kz, 52.70.La
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献