Dynorphin A(1-8): stability and implications for in vitro opioid activity

Author:

Bell K M,Traynor J R

Abstract

The opioid binding profile and in vitro activity of the endogenous opioid peptide dynorphin A(1-8) have been studied. At opioid receptors in guinea-pig brain dynorphin A(1-8) was nonselective, although with some preference for the delta receptor (Ki 4.6 nM) over µ (Ki 18 nM) and kappa (Ki 40 nM) receptors. However, a high degree of metabolism was observed, with less than 10% of added dynorphin A(1-8) remaining at the end of the binding assay. In the presence of peptidase inhibitors to prevent breakdown of the N- and C-termini and the Gly3-Phe4 bond the major metabolite was [Leu5]enkephalin (representing 49% recovered material). This was reduced by inclusion of an inhibitor of endopeptidase EC 3.4.24.15. In the presence of all the peptidase inhibitors the affinity for kappa receptors (Ki 0.5 nM) relative to µ and delta receptors increased, but no selectivity of binding was observed. This lack of selectivity was confirmed using membranes from C6 glioma cells expressing rat opioid receptors. The agonist effect of dynorphin A(1-8) in the mouse vas deferens (EC50 116 nM) and guinea-pig ileum (EC50 38 nM) was mediated through the kappa receptor as evidenced by the rightward shifts afforded by the kappa -selective antagonist norbinaltorphimine. In the presence of peptidase inhibition potency was improved 2-fold in the mouse vas deferens and 20-fold in the guinea-pig ileum, but this agonist activity was mediated through delta receptors in the vas deferens and µ receptors in the ileum, as a result of the formation and stabilization of [Leu5]enkephalin. The results confirm the absence of receptor selectivity of dynorphin A(1-8) in binding assays but show that its agonist effects, at least in vitro, are mediated exclusively through the kappa opioid receptor.Key words: dynorphin A(1-8), opioid receptors, peptide metabolism, mouse vas deferens, guinea-pig ileum.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3