Renal medullary plasma flow rate and reabsorption of salt and water from inner medullary collecting duct

Author:

Cupples W. A.,Sonnenberg H.

Abstract

It has been proposed that medullary washout secondary to increased blood flow will limit maximal urine osmolality and reabsorption of salt and water from the inner medullary collecting duct. We have tested this prediction. The function of the inner medullary collecting duct was examined by microcatheterization. Acetylcholine was infused directly into the renal circulation, captopril was infused intravenously, and angiotensin II was infused into the renal circulation in rats which also received captopril. Medullary plasma flow rate, measured by dye–dilution in parallel experiments, was not significantly increased by acetylcholine; it was increased 30% (p < 0.02) by systemic infusion of captopril, and was returned to control by angiotensin II. Acetylcholine increased both urine flow rate and sodium excretion (p < 0.01, p < 0.001, respectively), while captopril increased only sodium excretion (p < 0.025). Angiotensin II blocked the natriuresis due to captopril. None of the treatments altered urine osmolality (p > 0.4 in all cases). Acetylcholine increased the loads of water, sodium, chloride, and total solute delivered to the inner medullary collecting duct. Angiotensin II reduced delivery of water and solutes compared with captopril alone. None of the treatments affected load dependency of reabsorption of water, sodium, chloride, or total solute in the inner medullary collecting duct. We conclude that there is, at most, a weak interaction between medullary blood flow and reabsorption from the inner medullary collecting duct.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3