Inheritance and expression of tissue-specific catalase activity during development and aging in mice

Author:

Schisler N. J.,Singh S. M.

Abstract

The catalase activity in the liver, kidney, lung, and blood hemolysate was measured in newborn, 21-, 70-, 175-, and >400-day-old mice from the strains BALB/c, Csb, C3H/HeSnJ, C3H/S, C57BL/6J, SW, and 129/ReJ. Catalase activity was found to be highest in the liver (~0.33 U/mg protein) followed by the kidney (~0.13 U/mg protein), lung (~0.05 U/mg protein), and blood hemolysate (~0.03 U/mg protein). ANOVA analysis indicated significant differences in enzyme activity among strains and age groups studied. The developmental profiles of enzyme activity were tissue and strain specific. Catalase activity in the blood, for example, was generally higher at birth and at old age, whereas the kidney catalase activity was low at birth and increased substantially with age. Strains could be classified as normal (129/ReJ, BALB/c, C3H/HeSnJ, C3H/S), hypocatalasemic (C57BL/6J, SW), and acatalasemic (Csb) with respect to enzyme activity and it was on this basis that the inheritance of the catalase phenotype was studied using appropriate crosses. The enzyme activity level in each tissue appears to be governed by a unique set of genetic regulators/modifiers that interact with a single structural gene (Cs) or its product to produce the catalase phenotype. Some of these (e.g., Ce-1 and Ce-2) have been previously described but based on the results of various crosses reported here, more must exist that remain still uncharacterized at the molecular level. Models proposed for the inheritance of the catalase phenotype vary in complexity from single allelic differences between strains (e.g., BALB/c × Csb; blood) to a system of multiple interacting genetic determinants (e.g., BALB/c × Csb; liver) each having dominant (e.g., C57BL/6J over BALB/c; liver) and recessive components (e.g., gene(s) conferring the acatalasemic phenotype in BALB/c × Csb; blood and kidney). Such results are important and offer an interesting model to further characterize aspects of eukaryotic gene regulation. Key words: catalase, inbred mice, tissue specificity, developmental profile, inheritance.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3