THE ROLE OF LONG-RANGE FORCES IN THE COHESION OF LIPOPROTEINS

Author:

Salem L.

Abstract

The various long-range forces which are effective between molecules in their electronic ground states are examined. Orders of magnitude are given for those forces which should occur in the interaction of lipide and protein chains. It is found that electrostatic forces should be responsible for bringing and holding together protein and lipide components, but London – Van der Waals dispersion forces are probably of paramount importance in maintaining the lipide chains together in micelles or double layers.Special attention is drawn to the dispersion forces and to the conditions under which these forces are locally additive; one can calculate accurate values of the dispersion energy of interaction between saturated hydrocarbon chains at short distances (a few angstroms apart) by adding all the bond–bond interactions. A general expression is given for the dispersion energy between two parallel and opposed chains built out of identical units, and numerical values are given for the case of closely packed hydrocarbon chains.The total attraction energy is extremely sensitive to the intermolecular distance. The role of this "distance-specificity" in interactions involving unsaturated fatty acid chains and its contribution to the stability of lipoproteins is briefly examined.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A program concerning intermolecular forces and tissue-specific cell contacts;International Journal of Quantum Chemistry;2009-06-18

2. Somatostatin analogs which define the role of the lysine-9 amino group;International Journal of Peptide and Protein Research;2009-01-12

3. Rôle of the Surface State in the Development of Myxoviruses;Ciba Foundation Symposium - Cellular Biology of Myxovirus Infections;2008-05-30

4. Single Cell Properties-Membrane Development;Ciba Foundation Symposium - Cell Differentiation;2008-05-27

5. STRUCTURAL STUDIES OF BIOLOGICAL MEMBRANES: THE STRUCTURE OF MYELIN*;Annals of the New York Academy of Sciences;2006-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3