Fine structure of the extracellular sheath and cell walls inOphiostoma novo-ulmigrowing on various substrates

Author:

Ouellette G B,Chamberland H,Goulet A,Lachapelle M,Lafontaine J -G

Abstract

The presence of microfilamentous-like structures of tubular appearance (MFS) in cell walls and extracellular sheath material (ES) in a number of isolates of Ophiostoma novo-ulmi Brasier grown on various substrates and following various treatments is reported. Standard fixation or high-pressure freezing methods were used, and cytochemical tests were carried out to detect fungal and host wall components and, in some cases, fungal DNA. In some cases, serial 0.2-μm-thick sections were examined at 120 kV and tilted to obtain stereoscopic images. Whether the fungal cell walls were thick and composed of an outer opaque and inner more electron-lucent layers, or thin and barely perceptible, MFS were observed to extend from the cell cytoplasm as parallel structures across the walls into the surrounding medium, including host cell components in infected elm tissues. MFS were associated (in samples from inoculated trees) with cleavage and desquamation of fungal walls. ES and MFS did not label for cellulose or chitin, but generally labelled slightly for β-(1-3)-glucan and mannose, and strongly for galactose. Only the lucent, inner fungal wall layer labelled for chitin and cellulose. DNA labelling was confined to nuclei and mitochondria in fungal cells from cultures on agar medium; in cells from cultures on millipore membranes, it was pronounced over imprecisely delimited cell regions. The possible ontogeny of MFS components and their importance are discussed. Key words: chitin, Dutch elm disease, fungal fimbriae, fungal walls, gold-complexed probes, microfilamentous structures (MFS).

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3