Models of the equilibrium distribution of organic chemicals between water and solid phases of environmental media

Author:

Webster Eva M.1

Affiliation:

1. Environmental and Life Sciences, Trent University, 1600 West Bank Drive, Peterborough, ON K9J 7B8, Canada.

Abstract

Water–solid phase equilibrium distributions are foundational to multimedia environmental fate models of anthropogenic organic chemicals. This contextual review of equilibrium models of ionizing organics in aqueous–solids systems highlights the broad range of modeling assumptions and paradigms that have been employed. The complexity of soils and sediment, especially the organic phase, is provided as background along with a description of equilibrium models for nonpolar, nonionizing organics. The ways in which these single-species models have been modified and adapted for application to ionizing organics is detailed. The individual species proposed as contributing to observed distributions include the neutral parent, ions, and ion pairs. The debate over the role of the organic phase in soil and sediment solids is presented. Both absorption and surface adsorption models are described. Organic carbon (OC)-dependent models range from the simple Karickhoff equation to complex molecular connectivity indices models and polyparameter linear free energy relationship (pp-LFER) models. Adsorption models are derived from inorganic interaction chemistry. They include the early Langmuir model and Freundlich equation and continue to the modern Model VI and the NICA-Donnan model. Adsorption models focus on the mineral phase, but the role of the organic phase is not entirely dismissed. Dual mode models seek to combine absorption to OC with adsorption interactions. Conclusions drawn from studies of acid behavior do not predict the sorption of bases; bases are described separately. No single explanation and accompanying model of the distribution behavior of ionizing organics has emerged as the clear choice for regulatory use. The complexity of chemical–environment interactions is such that models are either challenging to parameterize and understand or they fail to capture key aspect(s) of the system critical to understanding of one or more classes of chemical or environmental medium. Future research directions are suggested including the possible benefit of removing sorbate–sorbent or chemical–environment distinctions.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3