Changes in protein biosynthesis during the differentiation ofPisolithus–Eucalyptus grandisectomycorrhiza

Author:

Burgess Treena,Dell Bernie

Abstract

Protein biosynthesis in Pisolithus – Eucalyptus grandis ectomycorrhiza was related to the stage of ectomycorrhizal development using two-dimensional polyacrylamide gel electrophoresis of proteins labelled by in vivo incorporation of35S radiolabelled amino acids. Nineteen-day-old seedlings were radiolabelled and the primary root was divided into 1-cm segments. With increasing distance from the tip of the primary root, the lateral roots developed as follows: segment 1, no lateral tips; segment 2, three lateral tips, 1–4 days old; segment 3, five lateral tips, 3–8 days old; segment 4, five lateral tips, 7–12 days old. Six-day-old ectomycorrhizas were fully formed with a mantle and Hartig net. During ectomycorrhizal development, there was a decrease in all plant proteins and differential accumulation of fungal proteins. The apical segment of the primary root had a biosynthesis profile very similar to that of noninoculated roots. By contrast, the other segments of the primary root, with attached lateral roots, had biosynthesis profiles that were similar to those of the free-living hyphae. Thus, plant biosynthesis was shown to be predominantly associated with the primary root meristem. The domination of the fungal partner in the protein biosynthesis of developing ectomycorrhiza is probably a consequence of stimulated fungal growth and the corresponding decrease in plant meristematic activity. Ectomycorrhizal development was associated with a differential accumulation of fungal polypeptides and the appearance of a group of symbiosis-related acid fungal polypeptides between 27 and 37 kDa. As the polypeptides were present in a similar magnitude throughout ectomycorrhizal development (lateral tips 1–12 days old), it is suggested that they function as structural proteins associated with mantle formation. Keywords: ectomycorrhizal development, Eucalyptus, Pisolithus, protein biosynthesis, symbiosis-related polypeptides.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3